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Laccase kinetics of degradation and coupling reactions
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Abstract

The ability ofTrametes villosalaccase to degrade an azo dye (methyl orange) and to catalyze the coupling reactions between the aromatic
amines and catechol was studied. It was found that the apparent Michaelis–Menten constants obtained from amperometric measurements were
comparable to the ones obtained in the oxygen consumption experiments (8.20 and 7.40�M, respectively). From the measurements of the
mediated and mediatorless currents of azo dye degradation and coupling reactions it was concluded that the addition of 1-hydroxybenzotriazole
(HBT) as mediator considerably improves the catalytic efficiencies.
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It can be concluded that the mediated coupling of the aromatic amine with catechol opens the perspectives of physical remo
olluting chemicals from the nature and the usage of the laccase immobilized onto macro-electrodes in online systems with
onitoring of the enzyme activity.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Azo dyes, the largest chemical class of dyes with the great-
st variety of colors, have been used extensively in the latest
ears for the textile dyeing and paper printing. The elimina-
ion of colored effluents in wastewater treatment systems is
ainly based on expensive physical or chemical procedures

uch as adsorption, concentration, chemical transformation
nd incineration[1].

The extracellular ligninolytic enzyme system of white-rot
ungi can degrade a wide variety of recalcitrant compounds,
uch as xenobiotics, lignin, and various types of dyes[2,3].
he major enzymes associated with the lignin-degrading abil-

ty of white-rot fungi are lignin peroxidase (EC 1.11.1.14)
4,5], manganese peroxidase (EC 1.11.1.13)[6–8] and lac-
ase (EC 1.10.3.2)[9,10].

Laccases are multi-copper phenol oxidases, which reduces
xygen to water and simultaneously catalyze the oxidation
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of aromatic pollutants like anilines and phenols[11,12]. Sev-
eral methods using laccase, immobilized laccase and
case/mediator system have been developed for the
ment of the textile effluents[13–21]. This enzyme deco
orizes some azo dyes without direct cleavage of the
bond through a highly non-specific free radical mechan
thereby avoiding the formation of toxic aromatic amines[22].
However, the substrate specificity of laccase limits the n
ber of azo dyes that can be degraded[22–24].

Laccases can be also associated with an azo reductas
under microaerophilic conditions can cleave a wider rang
azo dyes into corresponding amines[25,26]. TheTrametes
villosa laccase is able to polymerize various substituted
lines through an oxidative oligomerization established
nonenzymatic coupling reaction[27]. However, in order t
enhance the degree of polymerization, catechol, a diphe
compound, was added to the effluent[28]. The presence o
catechol disfavors the aromatic amine self-coupling and
hances the coupling between catechol and the amines[29,30].

The copolymerization, between the oxidized anilines
catechol in the effluent, performed by simultaneously no
381-1177/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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zymatic coupling and enzymatic polymerization showed
products with low solubility. These kinds of reaction products
were not observed when the anilines and catechol separately
were reacted in presence of laccase in the same conditions
[31]. The formation of the insoluble products brings the ad-
vantage that they can be removed from effluent in the form
of a precipitate by further treatment processes.

In the present paper two approaches, the direct laccase
decolorization of effluent and the coupling/polymerization
laccase reaction in the azo reductase pretreated effluent have
been compared on the basis of the kinetic parameters using
an HBT/laccase system.

1-Hydroxybenzotriazole (HBT), the most researched me-
diator that is able to oxidize a variety of aromatic compounds,
was used to broaden the range of azo dyes and to increase the
decolorization or polymerization rates of laccase[10,32–34].

2. Materials and methods

2.1. Chemicals

The methyl orange dye (3-(4-dimethylamino-1-phenyla-
zo) benzene sulfonic acid sodium salt) (seeFig. 1) was
synthesized by the conventional method of coupling the
d
p as
9 were

F lfonic
a
f

confirmed by1H NMR spectroscopy in dymethylsulfoxide
(DMSO).

1-Hydroxybenzotriazole and the salts were purchased
from Sigma, St. Louis, MO. All chemicals were of high purity
and used as received.

Laccase (EC 1.10.3.2) fromT. villosa(5.3 mg protein/mL,
600 U/mL) was kindly provided by Novo Nordisk, Denmark.

2.2. Electrode preparation

For the experiments with the laccase in solution was used
as working electrode a glassy carbon electrode. Prior to the
experiments the surface of the glassy carbon electrode was
successively polished with 5, 1, 0.3 and 0.05�m alumina
polish (Buehler Ltd., USA) and then rinsed with 8 M nitric
acid and distilled water before use.

The laccase modified electrodes were prepared using rods
of solid spectroscopic graphite (SGL Carbon, Werke Rings-
dorff, Bonn, Germany, type RW001, 3.05 mm diameter). The
graphite rods were first polished on wet fine-structured emery
paper (grit size: P1200) and then additionally polished on pa-
per to obtain a mirror-like surface. The electrode rods were
carefully rinsed with deionized water and allowed to dry at
room temperature. A 5�L aliquot of the enzyme solution
was added to each of the polished ends of the graphite rods
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iazonium salt of metanilic acid with eitherN,N-dimethyl-
-phenylenediamine[35]. The minimum dye content w
0%. The structures of the isolated dye, as sodium salts,

ig. 1. Structure of the 3-(4-dimethylamino-1-phenylazo) benzene su

cid sodium salt (A), 1-hydroxybenzotriazole (B), 2,5-diaminobenzene sul-

onic acid (C), and catechol (D).

a trode
s

nd the electrodes were then placed at 4◦C for 1 h in a glas
eaker covered with sealing film, to allow the enzym
dsorb slowly preventing rapid evaporation of the dro
f enzyme solution. The enzyme electrodes were then
ughly rinsed with 0.1 M sodium citrate buffer, pH 5.0, a

f not immediately used, they were stored in the same b
t 4◦C. Weakly adsorbed laccase was desorbed before
urements, by rotating the electrode in buffer for at le
0 min.

.3. Electrochemical experiments

All the electrochemical experiments were perform
sing a Voltalab 30 Potentiostat (Radiometer Analyt
rance), controlled by the Voltamaster 4 (version 5.6) e

rochemical software. The working, counter and refere
lectrodes were respectively: glassy carbon electrod

he modified graphite electrode (0.07 cm2), coiled platinum
ire (23 cm) and an Ag| AgCl electrode filled with 3 M
aCl (BAS, Bioanalytical Systems, West Lafayette,
SA). The supporting electrolyte used in the electroch

cal cell was a solution of 0.1 M sodium-citrate buffer
.0. All solutions were deoxygenated through bubbling

rogen for 20 min before measurements. All experim
ere performed in bulk using amperometric detection (
xperiment was repeated five times). The applied po
ial was−50 mV versus Ag| AgCl. The experiments we
erformed using a glassy carbon (laccase in solution
graphite electrode (laccase adsorbed onto the elec

urface).
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The ability of the laccase to decolorize the azo dye was in-
vestigated through addition of a freshly prepared dye solution
to the electrolyte solution.

2.4. Dissolved oxygen consumption rate

Experiments were carried out in a Pyrex flask with a net
volume of 250 cm3. A galvanic oxygen sensor (precision of
0.01 mg/L) was used (WTW-InoLab Oxi level 2, Weilheim,
Germany) to measure the dissolved oxygen concentration in
the reaction medium.

To assure a constant temperature, the reactor was im-
mersed in a thermostated water bath operating at 20◦C with
a precision of±0.1◦C. The measurements (duplicates) were
done under stirring, using a magnetic stirrer at 250 rpm. The
monitoring of the degradation started after addition of 20�L
laccase, and the concentration of the dissolved oxygen was
monitored continuously for 15 min. The registered response
was corrected towards the response obtained for the blank
samples (with just the buffer).

2.5. Decolorization of the azo dye using laccase in the
presence and in the absence of a mediator

2.5 mL azo dye solution (10 mM) in 0.1 M sodium-citrate
buffer pH 5.0 was incubated with 20�L of laccase and 0.5 mL
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Fig. 2. Role of the mediator in the enzymatic activity.

3. Results and discussion

3.1. Methyl orange degradation

Laccase catalyzes the oxidation of organic substrates
such as phenolic compounds by molecular oxygen in ho-
mogeneous solutions[36–40]. When laccase is adsorbed on
graphite, bioelectrocatalytic reduction of oxygen occurs and
is observed as a reduction current caused by direct (medi-
atorless) electron transfer (DET) from the electrode to the
immobilized laccase and then further to molecular oxygen
in solution. In the presence of soluble electron donors, lac-
case can be reduced in a mediated electron transfer (MET)
mechanism (seeFig. 2). In this mechanism the electron donor
(substrate) penetrates the active site of the enzyme where it is
oxidized in a single electron oxidation step often producing
an electrochemically active compound (possibly a radical)
that in turn can be re-reduced at the electrode surface in a
mediated electron transfer (MET) step.

The responses are dependent on the concentration of the
azo dye in the solution of interest. At higher azo dye con-
centrations the current–concentration dependence gradually
reached saturation (Fig. 3). The apparent Michaelis–Menten
constants (Kapp

m ) and maximal currents (Imax) have been cal-
culated by fitting the variation of current–concentration de-
pendencies of the analyzed compounds to the electrochemical
M
c rate.
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nsump
f 0.1 M sodium-citrate buffer pH 5.0 in a standard cuvet
5◦C. The absorbance was measured at different incub

imes during the experiment and the percentage of effl
ecolorization was calculated thereof.

In the case when the mediated degradation of the dye
nvestigated, then the buffer volume (0.5 mL) was repla
ith 10 mM buffered solution of 1-hydroxybenzotriaz

HBT).

.6. Coupling experiments

Equimolar solutions of 2,5-diamino benzene sulfonic
DBSA) and catechol (10 mM; total volume 2.5 mL) buffe
ith 0.1 M sodium-citrate buffer pH 5.0, were incubated w
0�L of laccase and 0.5 mL of buffer in a standard stir
uvette at 25◦C. In the case of experiments with media
he buffer volume (0.5 mL) was replaced by 10 mM buffe
olution of HBT. Another experiment was performed w
BSA and laccase premixed solution and the catecho
dded successively. The same experiments were perfo
ith catechol and DBSA separately.

able 1
esults obtained for the oxidation of the methyl orange by laccase (e

Imax (�A) ± S.D.

zo dye and laccase immobilized 0.793± 0.002
zo dye and laccase immobilized + HBT 1.510± 0.009
zo dye and laccase in solution 29.442± 0.187
zo dye and laccase in solution + HBT 1.781± 0.012

a Value comparable with theKapp
m (7.40�M) obtained in the oxygen co
ichaelis–Menten equation (Table 1) [41]. K
app
m is an indi-

ator of the affinity that an enzyme has for a given subst
The values of theKapp

m obtained using the amperom
ic detection with laccase in solution and the monitorin
he oxygen consumption were found to be similar (8.2
.4�M, respectively).

The experiments with immobilized and free laccase
eading us to the conclusion that the immobilized lacca
ess accessible than the free enzyme for interaction wit
ye [42,43]. This fact is also confirmed by comparing
atalytic efficiencies of the oxidation reactions, values
or the adsorbed laccase were found to be about 300
ower than for the system with laccase in solution.

eriment was repeated five times)

K
app
m (�M) ± S.D. Imax/K

app
m (�A �M−1) ± R.S.D.

31.497± 0.075 0.025± 0.003
0.699± 0.004 2.160± 0.008

8.206a ± 0.052 3.588± 0.009
0.377± 0.003 4.724± 0.009

tion experiments.
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Fig. 3. Calibration graph for methyl orange obtained with a laccase modified
graphite electrode in 0.1 M citrate buffer pH 5.0, at−50 mV vs. Ag| AgCl
electrode filled with 3 M NaCl.

The presence of HBT in the system led to lowerK
app
m (be-

tween 20 and 50 times lower) than in the mediatorless system.
The kinetics of mediated laccase catalyzed reactions is firstly
affected by the affinity between enzyme and the mediator.
An estimation of this influence can be done by amperometric
measurements in terms ofImax/K

app
m ratio. LowerKapp

m values
at similar catalytic currents involved higher effectiveness of
the enzyme at lower mediator concentrations.

From the results obtained with free laccase in solution
and with laccase adsorbed onto the graphite electrodes it can
be concluded that the best system is the one with laccase in
solution because it shows a higher catalytic efficiency and
a more narrow dynamic range as a consequence of a higher
Imax and a lowerKapp

m value.
It is interesting to note that the presence of the HBT in

this system led to a 15 times lowerImax value than the one
obtained for the mediatorless system. This result might be
explained considering that an electrode fouling might occur
due to the initial step that is the oxidation of HBT to HBT•+

by laccase, followed by the deprotonation of HBT•+ with
formation of a nitroxyl radical. The latter eventually abstracts
the benzylic hydrogen from the substrate, thereby giving rise
to the aldehyde and producing HBT back[34].

3.2. Coupling experiments
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Fig. 4. Calibration graph obtained for oxidation of catechol by laccase in
presence of HBT: (�) catechol premixed with DBSA, (�) catechol alone,
(�) catechol added after previous addition of DBSA to the system, in 0.1 M
citrate buffer pH 5.0, at−50 mV vs. Ag| AgCl electrode filled with 3 M
NaCl.

It was observed that in presence of DBSA the addition of
catechol or of laccase to the system gave no change in the
current, even if HBT (as mediator) was added to the solution.
The absence of a measurable signal at the used concentration
of DBSA permitted us to run further experiments in order to
study the unmediated and mediated coupling of the catechol
with DBSA in presence of laccase.

Firstly the response of the catechol oxidation by laccase
was monitored in the absence and in the presence of 100�M
HBT. Since the response of the sensor is proportional to the
concentration of the catechol in solution, then if the catechol
is consumed in the coupling reaction with DBSA this will be
observed as decay in the current (Fig. 4).

When the coupling reaction was studied in the absence of
HBT the current measured was due to the oxidation of cate-
chol by laccase (figure not shown). In the coupling reactions it
could be observed that signal measured due to the addition of
catechol was lower if DBSA was present into the electrolyte
solution. The same low response was observed if the catechol
was added after previous mixing with DBSA (equimolar ra-
tio). As can be seen fromTable 2, for this case the values
of Imax are decreased in both cases when DBSA is present
in the electrolyte solution, and, moreover an increase in the
values ofKapp

m is observed leading us to the conclusion that
a competitive reaction (coupling of the catechol with DBSA)
might take place.

rved
a the
c rior
t
F echol
a nd of
t e
The feasibility of oxidative coupling between xenobio
n the presence of oxidoreductive enzymes for the rem
ion of environmental pollution has been described by var
esearchers[44–46].

In our studies we used catechol as coupler to enhanc
ossibility of removal of the aromatic amines formed du

he azo dye degradation. At the same time DBSA was ch
ince it is one of the most studied precursors of the cou
eactions[29].
In the presence of HBT as mediator it was also obse
diminution in the current registered for the case when

atechol and DBSA were mixed (equimolecular ratio) p
o the addition to the electrolyte solution (marked with� in
ig. 4) in respect to the response obtained when the cat
ddition was made just in the presence of laccase a

he HBT (marked with� in Fig. 4). Surprisingly when th



A. Zille et al. / Journal of Molecular Catalysis B: Enzymatic 33 (2005) 23–28 27

Table 2
Results obtained for the coupling reaction of the DBSA with catechol (each experiment was repeated five times)

Imax (�A) ± S.D. K
app
m (�M) ± S.D. Imax/K

app
m (�A �M−1) ± R.S. D.

Catechol and laccase 2.399± 0.014 146.970± 0.884 0.0163± 0.008
DBSA and laccase n.d.a n.d. n.d.
DBSA and catechol n.d. n.d. n.d.
DBSA/laccase premixed and catechol 1.741± 0.011 174.750± 1.091 0.0099± 0.002
DBSA/catechol premixed and laccase 1.935± 0.017 226.110± 1.988 0.0086± 0.001

Catechol and laccase + HBT 1.535± 0.011 260.700± 1.841 0.0059± 0.007
DBSA and laccase + HBT n.d. n.d. n.d.
DBSA and catechol + HBT n.d. n.d. n.d.
DBSA/laccase premixed and catechol + HBT 3.128± 0.006 133.470± 0.274 0.0234± 0.002
DBSA/catechol premixed and laccase + HBT 1.113± 0.004 117.630± 0.498 0.0094± 0.005

DBSA in presence of catechol or in the presence of laccase gave no change in the current even in the presence of HBT.
a n.d.: not detectable.

addition of the catechol to the system was made after addition
of the HBT and DBSA it was observed that the registered
currents for catechol (marked with� in Fig. 4) are higher
than in the absence of DBSA (amplification factor of 2).

In the premixed solution of DBSA and catechol it might
be formed a coupling product before the addition of laccase
to the bulk solution and the presences of HBT favored the
copolymerization reaction[29,47]. From Table 2it can be
seen that the values obtained for theK

app
m for the premixed

solutions of catechol and DBSA, are decreasing when the
reaction occurs in presence of HBT.

At the same time when the catechol were added after addi-
tion of laccase to the solution of DBSA, the values forK

app
m

shows the same tendency to decrease in presence of HBT.
However, the best coupling system seems to be the premixed
solution of DBSA and catechol in the presence of HBT.

A full understanding of the interaction between catechol
and DBSA especially in the presence of HBT and its im-
plications on the Michaelis–Menten kinetics remain to be
elucidated.

4. Conclusion

With the addition of the HBT as a mediator it was possible
t lac-
c lution
s iffer-
e tained
w gives
u nline
m

al of
t on of
t chol,
a

s are
b val
o hen
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system, since is already existent in the humic substances of
the soil.
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